On the performance of the first-fit coloring algorithm on permutation graphs

نویسندگان

  • Stavros D. Nikolopoulos
  • Charis Papadopoulos
چکیده

In this paper we study the performance of a particular on-line coloring algorithm, the First-Fit or Greedy algorithm, on a class of perfect graphs namely the permutation graphs. We prove that the largest number of colors ̄FF(G) that the First-Fit coloring algorithm (FF) needs on permutation graphs of chromatic number ̄(G) = ̄ when taken over all possible vertex orderings is not linearly bounded in terms of the off-line optimum, if ̄ is a fixed positive integer. Specifically, we prove that for any integers ̄ > 0 and k ≥ 0, there exists a permutation graph G on n vertices such that ̄(G) = ̄ and ̄FF(G) ≥ 1 / 2 (( ̄2 + ̄) + k ( ̄2 ̄)), for sufficiently large n. Our result shows that the class of permutation graphs P is not first-fit ̄-bounded; that is, there exists no function f such that for all graphs G ∈ P , ̄FF(G) ≤ f(ˆ(G)). Recall that for perfect graphs ˆ(G) = ̄(G), where ˆ(G) denotes the clique number of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

الگوریتم ژنتیک با جهش آشوبی هوشمند و ترکیب چند‌نقطه‌ای مکاشفه‌ای برای حل مسئله رنگ‌آمیزی گراف

Graph coloring is a way of coloring the vertices of a graph such that no two adjacent vertices have the same color. Graph coloring problem (GCP) is about finding the smallest number of colors needed to color a given graph. The smallest number of colors needed to color a graph G, is called its chromatic number. GCP is a well-known NP-hard problems and, therefore, heuristic algorithms are usually...

متن کامل

Comparing First-Fit and Next-Fit for Online Edge Coloring

We study the performance of the algorithms First-Fit and Next-Fit for two online edge coloring problems. In the min-coloring problem, all edges must be colored using as few colors as possible. In the max-coloring problem, a fixed number of colors is given, and as many edges as possible should be colored. Previous analysis using the competitive ratio has not separated the performance of First-Fi...

متن کامل

First-fit coloring on interval graphs has performance ratio at least 5

First-fit is the online graph coloring algorithm that considers vertices one at a time in some order and assigns each vertex the least positive integer not used already on a neighbor. The maximum number of colors used by first-fit on graph G over all vertex orders is denoted χFF (G). The exact value of R := supG χFF (G) ω(G) over interval graphs G is unknown. Pemmaraju, Raman, and Varadarajan (...

متن کامل

On-Line Coloring of Oriented Graphs

A graph coloring algorithm that immediatly colors the vertices taken from a list without looking ahead or changing colors already assigned is called an one-line coloring algorithmm. We study in this paper on-line oriented coloring algorithms. Firstly, we investigate the First-Fit algorithm and we try to characterize the F F-optimall graphs that is the graphs for which there exists a linear orde...

متن کامل

On List Coloring and List Homomorphism of Permutation and Interval Graphs

List coloring is an NP-complete decision problem even if the total number of colors is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list coloring of permutation graphs with a bounded total number of colors. More generally, we give a polynomial-time algorithm that solves the list-homomorphism problem to any fixed target graph for a large clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2000